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Abstract: We adapt the spinorial geometry method to investigate supergravity back-

grounds with near maximal number of supersymmetries. We then apply the formalism

to show that the IIB supergravity backgrounds with 31 supersymmetries preserve an ad-

ditional supersymmetry and so they are maximally supersymmetric. This rules out the

existence of IIB supergravity preons.
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It has been known for some time that a priori in type II and eleven-dimensional su-

pergravities there may exist backgrounds with any number of supersymmetries. This is

because the holonomy of the supercovariant connection of these theories is a subgroup of

SL(32, R) and so any N < 32 spinors have a non-trivial stability subgroup in the holon-

omy group. For a more detailed explanation see [1 – 3] for the M-theory and [4] for IIB.

Furthermore, it was argued in [5] that the Killing spinor bundle K can be any subbundle

of the Spin bundle and the spacetime geometry depends on the trivialization of K. This

is unlike what happens in the case of Riemannian and Lorentzian geometries [6, 7] and

heterotic and type I supergravities1 [8], where there are restrictions both on the number of

Killing spinors and the Killing spinor bundle.

In this paper, we shall show that IIB backgrounds with 31 supersymmetries are maxi-

mally supersymmetric. Backgrounds with 31 supersymmetries have been considered before

in the context of M-theory [9] and have been termed as preons. To our knowledge this is

the first example which demonstrates that there are restrictions on the number of super-

symmetries of type II backgrounds. To do this, we shall adapt the spinorial method [10]

of solving Killing spinor equations to backgrounds that admit near maximal number of

supersymmetries. We shall mostly focus on IIB and eleven-dimensional supergravity but

most of the analysis extends to all supergravity theories.

To adapt the spinorial method to backgrounds with near maximal number of supersym-

metries, we introduce a “normal” K⊥ to the Killing spinor bundle K of a supersymmetric

background. The spinors of IIB supergravity are complex positive chirality Weyl spinors,

so the Spin bundle is Sc
+ = S+⊗C, where S+ is the rank sixteen bundle of positive chirality

Majorana-Weyl spinors. Sc
+ may also be thought of as an associated bundle of a principal

bundle with fibre SL(32, R), the holonomy group of the supercovariant connection, acting

with the fundamental representation on R
32. If a background admits N Killing spinors

which span the fibre of the Killing spinor bundle K, then one has the sequence

0 → K → Sc
+ → Sc

+/K → 0 . (1)

The inclusion i : K → Sc
+ can be locally described as

εr =
32∑

i=1

f i
rηi , r = 1, . . . , N , (2)

where ηp, p = 1, . . . , 16, is a basis in the space of positive chirality Majorana-Weyl spinors,

η16+p = iηp and the coefficients f are real spacetime functions. For our notation and spinor

conventions see [5]. Any N Killing spinors related by a local Spin(9, 1) transformation give

rise to the same spacetime geometry. This is because the Killing spinor equations and the

field equations of IIB supergravity are Lorentz invariant. Therefore any bundles of Killing

spinors and any choice of sections related by a Spin(9, 1) gauge transformation2 should be

identified.

1This is provided the parallel spinors are Killing.
2IIB supergravity has a Spin(9, 1) × U(1) gauge symmetry but the restriction to Spin(9, 1) will suffice.
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To construct K⊥, first consider the dual ?Sc
+ of Sc

+ and introduce a basis ηi, ηi(ηj) = δi
j ,

i.e. η16+p = −iηp. Next consider the sections α of ?Sc
+ that annihilate the Killing spinors

εr, i.e α(ε) = 0, or equivalently

f i
rui = 0 , α = uiη

i , (3)

where ui are real spacetime functions. Since the matrix f = (f i
r) has rank N , there

are 32 − N solutions to this equation. These solutions span the sections of the co-kernel,

coker i ⊂ ?Sc
+ of the inclusion map i : K → Sc

+. It is well-known that Spin(9, 1) has an

invariant inner product B : S+ ⊗ S− → R

B(ε, ζ) = −B(ζ, ε) =< B(ε∗), ζ > , (4)

which extends to B : Sc
+ ⊗ Sc

− → C as a bi-linear in both entries. Next consider

B(ε, ζ) = ReB(ε, ζ) , (5)

which defines a non-degenerate pairing B : Sc
+ ⊗ Sc

− → R. This in turn induces a isomor-

phism j : ?Sc
+ → Sc

− as B(j(α), ε) = α(ε). We identify the image of j, j(coker i) ⊂ Sc
−, as

the “normal” bundle K⊥ of K, i.e. j(coker i) = K⊥. Clearly if α ∈ coker i and ε ∈ K, then

α(ε) = 0, and so one gets the “orthogonality” condition,

B(j(α), ε) = 0 . (6)

Observe that Sc
+/K = ?K⊥. To write this orthogonality condition in components, introduce

a basis in Sc
−, say θi′ = −Γ0ηi. Then write j(α) = ν = ni′θi′ and the condition (6) can be

written as

ni′Bi′jf
j
r = 0 , (7)

where Bi′j = B(θi′ , ηj).

The condition (6), or equivalently (7), leads to a correspondence between the N Killing

spinors and the 32 − N normal directions, i.e.

N ←→ 32 − N . (8)

This is because instead of specifying the Killing spinors, one can determine the normal

spinors. Substituting the normal spinors into these equations, one can then solve for the

Killing spinors. In addition, the construction of K⊥ and (6) or (7) are Spin(9, 1) covariant.

Because of this, the Spin(9, 1) gauge symmetry can be used to bring the normal spinors

instead of the Killing spinors into a canonical form. In turn, this leads to a simplification in

the expression for the Killing spinors which can be used to solve the Killing spinor equations

for backgrounds with near maximal number of supersymmetries. We shall demonstrate this

for IIB backgrounds with 31 supersymmetries. Furthermore, one may consider cases such

that the sections of K⊥ are invariant under some non-trivial stability subgroup of Spin(9, 1).

It is clear these cases are related to (e.g. maximal and half-maximal) G-backgrounds [5, 11],

where the invariance condition was imposed on the Killing spinors. The spinorial geometry
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techniques that we use to investigate backgrounds with N supersymmetries can be adapted

to examine backgrounds with 32 − N supersymmetries and vice-versa.

One can easily extend the construction described above to M-theory. In particular,

one again has

0 → K → S → S/K → 0 , (9)

where S is the spin bundle associated with the Majorana representation of Spin(10, 1).

The inclusion map i : K → S can be written locally as εr =
∑32

i=1 f i
rηi, where f i

r are

real spacetime functions and (ηi, i = 1, . . . , 32) is a basis of Majorana spinors. As in the

IIB case, we consider the the co-kernel of the inclusion map i : K → S, coker i ⊂ ?S. It is

well known that S admits a Spin(10, 1) invariant inner product B which gives rise to an

isomorphism j : ?S → S. As in the IIB case, we define the normal bundle of the Killing

spinor bundle as K⊥ = j(coker i). In this case, K⊥ is a subbundle of S and S/K = K⊥.

Taking a section ν = niηi of K⊥, the orthogonality condition analogous to (6) and (7) is

niBijf
j
r = 0 , (10)

where Bij = B(ηi, ηj). The condition (10) is Spin(10, 1) covariant.

As an example consider IIB backgrounds that admit 31 supersymmetries. According to

the correspondence N ↔ 32−N , these are related to backgrounds with one supersymmetry

investigated in [12, 5]. To carry out the computation, we need to find the canonical form

of spinors in Sc
− up to Spin(9, 1) transformations. It is easy to deduce using an argument

similar to [12] that there are three kinds of orbits of Spin(9, 1) in the negative chirality

Weyl spinors with stability subgroups Spin(7) n R
8, SU(4) n R

8 and G2. A canonical form

of these spinors is

ν1 = (n + im)(e5 + e12345) , ν2 = (n − ` + im)e5 + (n + ` + im)e12345 ,

ν3 = n(e5 + e12345) + im(e1 + e234) , (11)

respectively. Using the Spin(9, 1) gauge symmetry, we choose K⊥ to lie along the directions

of one of the above spinors. Consider first the ν1 case. Write the Killing spinors as

εr = f1
r(1 + e1234) + f17

ri(1 + e1234) + fk
rηk , (12)

where ηk are remaining basis elements complementary to 1+e1234 and i(1+e1234). In what

follows, we use the basis constructed from the five types of spinors in [5]. Substituting εr

into (6), we get

f1
rn − f17

rm = 0 . (13)

Without loss of generality, we take n 6= 0. Using this, we solve for f1
r and substitute back

into the Killing spinors to find

εr =
f17

r

n
(m + in)(1 + e1234) + fk

rηk . (14)
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Similarly for the normal spinors ν2 and ν3, we find that

εr =
f17

r

n
[(m + in)(1 + e1234)] +

f18
r

n
[`(1 + e1234) − n(1 − e1234)] + fk

rηk ,

εr =
f19

r

n
[m(1 + e1234) + in(e15 + e2345)] + fk

rηk , (15)

correspondingly, where ηk are the remaining basis elements in each case. Substituting these

spinors into the algebraic Killing spinor equation and using that the rank of the matrix

(f i
r) is 31, for the Spin(7) n R

8 case one finds that

PMΓMC ∗ [(m + in)(1 + e1234)] +
1

24
GM1M2M3

ΓM1M2M3(m + in)(1 + e1234) = 0 ,

PMΓMηp = 0 , GM1M2M3
ΓM1M2M3ηp = 0 , p = 2, . . . , 16 , (16)

and similarly

PMΓMC ∗ [(m + in)(1 + e1234)] +
1

24
GM1M2M3

ΓM1M2M3(m + in)(1 + e1234) = 0 ,

PMΓMC ∗ [`(1 + e1234) − n(1 − e1234)]

+
1

24
GM1M2M3

ΓM1M2M3[`(1 + e1234) − n(1 − e1234)] = 0 ,

PMΓMC ∗ [i(1 − e1234)] +
1

24
GM1M2M3

ΓM1M2M3[i(1 − e1234)] = 0 ,

PMΓMηp = 0 , GM1M2M3
ΓM1M2M3ηp = 0 , p = 3, . . . , 16 , (17)

and

PMΓMC ∗ [m(1 + e1234) + in(e15 + e2345)]

+
1

24
GM1M2M3

ΓM1M2M3[m(1 + e1234) + in(e15 + e2345)] = 0 ,

PMΓMC ∗ (i(1 + e1234) +
1

24
GM1M2M3

ΓM1M2M3(i(1 + e1234) = 0 ,

PMΓMC ∗ (e15 + e2345) +
1

24
GM1M2M3

ΓM1M2M3(e15 + e2345) = 0 ,

PMΓMηp = 0 , GM1M2M3
ΓM1M2M3ηp = 0 , p = 2, 4, . . . , 16 , (18)

for the other two cases. The factorization of P and G flux terms on ηp occurs because some

of the remaining basis elements ηk come in complex conjugate pairs (ηp, iηp), where ηp are

Majorana-Weyl spinors. Since the P flux term in the Killing spinor equations contains

the charge conjugation matrix, C ∗ ηp = ηp and C ∗ (iηp) = −iηp, there is a relative sign

between the P and G flux terms when the algebraic Killing spinor equation is evaluated

on ηp and iηp. It now remains to solve these equations.

First, focus on the equation PMΓMηp = 0. Observe that in all cases, the remaining

spinors ηp contain spinors which are annihilated by either Γ− or Γ+. In the former case,

the condition PMΓMηp = 0 implies that only the P− component is non-vanishing while in

the latter case implies that only the component P+ is non-vanishing. Since spinors of both

types occur, P = 0.

Next consider the conditions on the G flux. It turns out that (16), (17) or (18)

imply that GM1M2M3
ΓM1M2M3ε = 0 for all spinors ε and so G = 0. To see this consider

– 4 –
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the Spin(7) n R
8 case. Setting P = 0 in the first condition in (16), we deduce that

GM1M2M3
ΓM1M2M3(1 + e1234) = 0. Since the algebraic Killing spinor equations with P = 0

are linear over the complex numbers, we also have that GM1M2M3
ΓM1M2M3i(1+ e1234) = 0.

This together with the remaining conditions in (16) imply that GM1M2M3
ΓM1M2M3ηi = 0

for all the basis elements ηi. A similar argument applies to the rest of the cases. Thus we

have found that the algebraic Killing spinor equations imply that P = G = 0. We have

also verified this by an explicit computation.

Finally, if the P and G fluxes vanish, then the gravitino Killing spinor equation of

IIB supergravity becomes linear over the complex numbers. This means that backgrounds

with vanishing P and G fluxes always preserve an even number of supersymmetries. Thus

backgrounds with 31 supersymmetries preserve an additional supersymmetry and so they

are maximally supersymmetric. In particular, they are locally isometric [13] to Minkowski

spacetime, AdS5 × S5 [14] and the maximally supersymmetric plane wave [15]. As a

corollary, we have shown that IIB supergravity preons do not exist.

Our proof has relied on the algebraic Killing spinor equation of IIB supergravity and

so does not straightforwardly generalize to eleven-dimensional supergravity. Nevertheless,

as we have seen the normal Killing spinor bundle construction generalizes to M-theory. In

addition, one can show that the 31 Killing spinors of M-theory preon backgrounds take

a simple form and it may be possible to solve the Killing spinor equations. We hope to

report on the existence of M-theory preons in the future.
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